Analysis of GPS TEC TIDs
Launched by the 2011 Tohoku Earthquake

Geoff Crowley, Irfan Azeem, Adam Reynolds, Tim Duly, Patrick McBride, Clive Winkler, and Don Hunton

ASTRA, Boulder, CO

Contact: iazeem@astraspace.net
• At ionospheric heights, the motion of the neutral gas in the AGW sets the ionosphere into motion.

• The waves displace the isoionic contours, resulting in a travelling ionospheric disturbance (TID).

• Traditionally, TIDs observed in the F region have been classified into two categories
 - Medium Scale TIDs (MSTIDs)
 - Large Scale TIDs (LSTIDs)

• Confusion: In past 10 yrs, another class of TIDs has been identified – *electrobuoyancy waves*. Unfortunately, they have been labelled “MSTIDs”, which has confused the community.
• Large-Scale Traveling Ionospheric Disturbances (LSTID)
 ▸ Amplitude: \(\sim 20\% \)
 ▸ Wavelength: 300 - 5,000 km
 ▸ Propagation velocity: 300 - 1000 m/s, equatorward
 ▸ Occurrence: Geomagnetic activity (Kp) dependence

• Medium-Scale Traveling Ionospheric Disturbances (MSTID)
 ▸ Amplitude: \(\sim 10\% \) (0.5 - >1.5 TECU)
 ▸ Wavelength: 100-300 km, Propagation velocity: 50-300 m/s

Classification of Gravity Waves/TIDs

<table>
<thead>
<tr>
<th></th>
<th>Medium Scale</th>
<th>Large Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>10-60 min</td>
<td>1-5 hr</td>
</tr>
<tr>
<td>(V_H) (m/s)</td>
<td>50-300</td>
<td>300-1000</td>
</tr>
<tr>
<td>(\lambda_H) (km)</td>
<td>100-300</td>
<td>300-5000</td>
</tr>
</tbody>
</table>

Electrobuoyancy Waves? (Erroneously called “MSTIDs”)
A magnitude 9.0 earthquake occurred on March 11, 2011 at 05:46:23 UT near the northeast coast of Honshu, Japan.

Figure shows the NOAA simulations of the 2011 Tohoku tsunami source and water heights over a tsunami travel time (TTT) map.

According to these simulations, the tsunami reached the west coast of the United States about 10 to 11 hours after the earthquake.
TIDDBIT Sounder - Peru

4.605 MHz, O-mode

Tsunami TIDs

Lurin

Huaura
Galvan et al. [2011] studied ionospheric perturbations caused by the Tohoku earthquake and tsunami. Perturbations were found in TEC near the epicenter of the 2011 earthquake.

Makela et al. [2011] presented observations of the airglow signature of GW, resulting from the 11 March 2011 Tohoku earthquake off the eastern coast of Japan.
GPS Data Analysis

- ~4000 GPS receivers throughout the continental United States

- Provides a 2D spatial map of TEC perturbations, which can be used to calculate TID parameters, including horizontal wavelength, phase speed, and period.

- The work presented in this paper demonstrates a technique for the study of ionospheric perturbations that can affect navigation, communications and surveillance systems.
• Near-field waves appear as spherical wave fronts
 ➢ Example: Thunderstorm

• Far-field waves appear as plane waves
 ➢ Example: Tsunami above the West Coast of US from the 2011 Tohoku Tsunami

• Develop algorithms to extract coherent wave features in 2D maps of GPS TEC perturbations

• Augmented 3D FFT algorithms to extract parameters of all extracted waves
TIDs in GPS TEC over the Western US

(a) 15:30 UT

(b) 16:40 UT

(c) 17:10 UT

(d) 18:10 UT
A subset of GPS data was selected covering the Western United States of ~4°x4° in latitude and longitude.

Within this region, a 2 hour time window was selected from 17:03:30 to 19:03:30 UTC, representative of the TID passing through this region.

A 3D FFT was calculated for this 3D “block,” and the data are zero padded to provide interpolation in the frequency domain.
From the k_x vs. k_y “slice” of the maximum value of the FFT, we computed the horizontal wavelength and azimuth of the wave.

From the FFT of the third dimension (i.e., time) we estimate the wave period.

<table>
<thead>
<tr>
<th>Wave Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period</td>
<td>15.1 min</td>
</tr>
<tr>
<td>Horizontal Wavelength (λ_H)</td>
<td>194.8 km</td>
</tr>
<tr>
<td>Phase Speed (ν_p)</td>
<td>215.0 m/s</td>
</tr>
<tr>
<td>Azimuth (θ)</td>
<td>105.2°</td>
</tr>
</tbody>
</table>
• Used GPS receivers to image TIDs over the US
• Quantitative characterization of the occurrences of TIDs over CONUS
• 11 March 2011 Tohoku tsunami.
• The tsunami propagated across the Pacific to the West Coast of the US over a ten-hour period
• Corresponding TIDs were observed in ionospheric TEC measurements.
• The period of the wave was 15.1 minutes with a horizontal wavelength of 194.8 km, phase velocity of 233.0 m/s, and an azimuth of 105.2° (propagating in the direction of the tsunami wave).
• Consistent with TID observations in airglow measurements from Hawaii earlier in the day, and other GPS TEC observations.
• Observations of long range propagation of TIDs have significant implications for advancing our understanding of TID sources including earthquakes, tsunamis, large explosions, etc