HF Signal Geolocation vs. Ionospheric Structure: An Engineering Solution Approach

IES

May 2015

Thomas Gaussiran, Roy Calfas, Amy Fleischmann
David Munton, Dave Rainwater, Jake Reinhold

Applied Research Laboratories, The University of Texas at Austin
The Skywave Geolocation Problem

Propagation paths depend on ionospheric conditions – more than one may exist.

HF Transmitter of interest

Incoming Signal – Angle of Arrival (AoA)

Receive antenna(s)
One Phase 1B Goal
- Measure AoAs of known targets with “truth array” of 19 crossed dipoles
- Estimate AoAs of withheld targets to within 1 msr

How well can an engineering solution based on check targets perform?

\(\gamma \) measures difference between:
- estimated unknown target AoA
- measured truth target AoA

For convenience, we use 1° cone angle instead of 1 msr solid angle in this talk.

We present results from an experiment supporting Phase 1B conducted at White Sands Missile Range (WSMR) 19-27 January 2014.
Phase 1B Metrics

<table>
<thead>
<tr>
<th>Figure of Merit</th>
<th>Short range (< 150 Km)</th>
<th>Medium & Long Range (> 150 Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted vs. Measured Ionogram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time delay error (β)</td>
<td>$\leq 20 \mu\text{sec}$</td>
<td></td>
</tr>
<tr>
<td>Maximum plasma frequency error (γ)</td>
<td>$\leq 50 \text{ kHz}$</td>
<td></td>
</tr>
<tr>
<td>Junction frequency percent error (γ)</td>
<td></td>
<td>$\leq 1%$</td>
</tr>
<tr>
<td>Predicted vs. measured angle-of-arrival difference</td>
<td>$\leq 1 \text{ mSR}$ (circular error)</td>
<td>$\leq 1 \text{ deg}$ (cross-range)</td>
</tr>
<tr>
<td>Predicted vs. Measured Channel Scattering Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode amplitude error</td>
<td>$\leq 5 \text{ dB}$</td>
<td></td>
</tr>
<tr>
<td>Doppler shift error</td>
<td>$\leq 0.05 \text{ Hz}$</td>
<td></td>
</tr>
<tr>
<td>Time delay error (β)</td>
<td>$\leq 20 \mu\text{sec}$</td>
<td></td>
</tr>
<tr>
<td>Timeliness / latency</td>
<td>$\leq 30 \text{ seconds (nowcast)}$ to be within a factor of two of the above accuracy $\leq 180 \text{ minutes (backcast)}$ with full accuracy</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>$\geq 90%$</td>
<td>Performer to identify time periods where accuracy goals can be met</td>
</tr>
</tbody>
</table>
What is “Engineering Solution” Approach?

How well is AoA of a transmitter estimated by those of “nearby” Transmitters (check targets)?

- Nearby in space, time, frequency

Elements:
1. Known Tx sites
2. Reasonably dense Tx sites
3. A precise Rx array
4. SNR > 50 dB post-correlation
5. Supporting iono. Measurements
6. Interpolation

Can we meet the 1msr goal?
Phase 1B Experiment Layout

Central Tx Site Equipment

Check Target site with GPS receiver

Optical Sensor at Midpoint

Midpoint Digisonde Site

Receive Site Equipment

Main array receive site: G-10

Digisonde

Dixon CA (1500km)

Kirtland AFB

50 Kilometers

Elkhorn NE (1300km)

Dixon CA

White Sands Missile Range, New Mexico

National Solar Observatory

Roswell, NM

White Sands Missile Range, New Mexico
Transmit Sites

Purpose: transmit signals that can be used to probe ionosphere and permit AoA analysis

- Transmit from 8 northern sites
 - (Rhodes is special)
- Single dipole antenna at each site
- One of two signals used at each site
 - Radar
 - LFM 50 kHz at f_{hi} or f_{lo}
 - Freq. offset in multiples of 5 Hz
 - Oblique Sounder
 - 3-12 MHz
 - 100 kHz/sec sweep
 - Freq. offset 2 kHz
- All transmit sites run concurrently
 - GPS timing
Transmit Site Geometry Relative to G10

Tx site layout designed to allow studies of ionospheric effects on range and azimuth AoA independently.

Sites with similar range

Sites with similar azimuth
G-10: The Truth Array

Purpose: Provide antenna arrays for AoA determination

Dipoles, Vector Sensors

plus

GPS Rx’s (2) & Beacon Receiver

19 crossed dipoles

Vector Sensors

Monocone Antennas

50 m

Dipole Antennas

GPS Antennas
(Septentrio, Ashtech)

Hughes Net
Satellite Comm
1B Conditions and Target Date for Analysis

<table>
<thead>
<tr>
<th>Day</th>
<th>F10.7</th>
<th>SSN</th>
<th>Kp</th>
<th>Observed TID Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>128</td>
<td>91</td>
<td>1</td>
<td>Quiet</td>
</tr>
<tr>
<td>20</td>
<td>137</td>
<td>131</td>
<td>1+</td>
<td>Active late</td>
</tr>
<tr>
<td>21</td>
<td>146</td>
<td>141</td>
<td>2+</td>
<td>Active</td>
</tr>
<tr>
<td>22</td>
<td>143</td>
<td>144</td>
<td>3</td>
<td>Active</td>
</tr>
<tr>
<td>23</td>
<td>136</td>
<td>121</td>
<td>2</td>
<td>Active Early</td>
</tr>
<tr>
<td>24</td>
<td>136</td>
<td>150</td>
<td>1+</td>
<td>Active</td>
</tr>
<tr>
<td>25</td>
<td>133</td>
<td>102</td>
<td>2+</td>
<td>Active</td>
</tr>
<tr>
<td>26</td>
<td>138</td>
<td>109</td>
<td>3</td>
<td>Active</td>
</tr>
<tr>
<td>27</td>
<td>144</td>
<td>62</td>
<td>1</td>
<td>Active Late</td>
</tr>
</tbody>
</table>

19 Jan had the least-disturbed ionosphere – was an “easy” day

- **Experiment Configuration on 19 Jan**
 - 7-9 Tx sites using LFM signals
 - One site Linear Swept Sounder
 - \(f_{hi} = 5.3 \text{ MHz}, f_{lo} = 4.6 \text{ MHz} \)
 - At most two sites at 4.6 MHz

- **O & X modes both present**
 - Polarization separation as result of crossed dipoles
 - X-mode AoAs are noisier
 - Focus only on O-mode here
Quick-Look, 19 Jan: AoA at Fran & Green Sites

Varying-range pair

Distinct temporal shift visible in elevation plot, less distinct in azimuth

Obvious and strong correlations! Possible MS-TID
Quick-Look, 19 Jan: AoA at Rob & Pole 616 Sites

Varying-azimuth pair

Distinct temporal shift visible in azimuth plot, less distinct in range

With Fran/Green plots, hypothesize MS-TID moving southerly
Quick-Look, 19 Jan: 2D Wander, Rob & Pole616

How does the variation look from the receive array?

- A subset of 30 minutes from 15:50 to 16:20 UTC
- Rob & Pole wander progressions are very similar, but not identical
Quick-Look Summary: What does this tell us?

❖ GPS and Ionosonde data from WSMR corroborate the conclusion that MS-TIDs were present.
❖ AoA truth array data from 19 Jan clearly exhibit:
 ▪ Medium scale dynamics (MS-TIDs)
 ▪ Small scale noise
❖ Under these **benign** ionospheric conditions, is the 1B metric achievable without accounting for MS-TIDs?
❖ Quantitative analysis: compare AoAs between sites
 ▪ Examine $\Delta\theta$ – cone angle between known AoAs
 ▪ Calculate 95th percentile value
 ▪ What does this distribution tell us about the situation?
Methodology

- Rotate into coords with boresight in direction of one AoA
- Compute \(u, v \) coordinates of second
- Remove mean of \(u, v \) (removes geometry)
- Any common trend is removed

Two signals from Rhodes (2 antennas ~100 m apart), offset in frequency by 5 Hz

Computed separate AoAs for each of the 2 signals

Ionospheric effects should be identical

Confirmed: within array resolution, signals have the same AoA

Observation floor is about 0.2° (95th percentile). We can assess program metric for other sites w/o worrying about the analysis chain!
Data suggests MS-TIDs can move the distribution to larger values, potentially in excess of the program goals.

Separation ~ 28 km
Varying-range pair
Program goal not met (95th percentile >> 1°)
Data suggests MS-TIDs can move the distribution to larger values, potentially in excess of the program goals.

Separation ~ 28 km
Varying-azimuth pair
Program goal not met
(95th percentile >> 1°)
All Site Pairs, Distance Dependence Summary

95th percentile summary for all WSMR site pairs

AoA metric met only for zero-baseline sites (Rhodes 2 antennas).

All other site pairs values are factor 1.6 – 3.4 larger than the metric; they fail at only 5 km site separation

HL geolocation must account for medium-scale ionospheric dynamics!

Assessment: real-world AoA correlations don’t satisfy the simple engineering solution assumptions
Thoughts on Results

❖ Under these benign conditions is the 1B metric achievable without accounting for MS-TIDs?
  For the one day examined here, MS-TIDs need to be accounted for properly before the program goals are met
 • Despite the benign weather
  Separation in frequency is likely to increase the challenge

Lesson: A more careful handling of medium scale disturbance is required for the periods we have examined.

Lesson: A simple implementation of the check target approach may work only in limited cases.
This research is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via US Navy Contract N00024-07-D-6200. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, US Navy, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon.