The USU-GAIM Data Assimilation Models for Ionospheric Specifications and Forecasts

Center for Atmospheric and Space Sciences
Utah State University

IES Meeting
Alexandria, VA
May 2015
Brief Overview of USU Data Assimilation Models

- **GAIM-GM** → Mid & Low Latitudes
- **GAIM-FP** → Mid & Low Latitudes, with Drivers
- **Mid-Low Electro-DA** → Ionosphere with Drivers
- **GAIM-High Lat** → High Latitudes with Drivers
- **GTM-DA** → Global Thermosphere
- **TWAM-DA** → Thermosphere Wind

- All Data Assimilation Models are Physics-Based
- Spatial and Temporal Resolutions are arbitrary
GAIM Data Sources

![Diagram of GAIM data sources](image)

<table>
<thead>
<tr>
<th>Ionosphere</th>
<th>Electrodynamics</th>
<th>Thermosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground-Based GPS-TEC</td>
<td>Ground magnetometers</td>
<td>Satellite UV emissions</td>
</tr>
<tr>
<td>Satellite-Based GPS Occultation</td>
<td>DMSP cross-track velocities</td>
<td>In situ neutral winds</td>
</tr>
<tr>
<td>Ionosonde and Digisonde</td>
<td>SuperDARN line-of-sight</td>
<td>Satellite accelerometer and</td>
</tr>
<tr>
<td></td>
<td>velocities</td>
<td>drag</td>
</tr>
<tr>
<td>In situ N_e</td>
<td>Iridium magnetometers</td>
<td>FPI winds</td>
</tr>
<tr>
<td>911Å, 1356Å, limb, disk (UV)</td>
<td>ACE IMF, Dst</td>
<td>ISR Neutral parameters</td>
</tr>
<tr>
<td>Solar UV, EUV</td>
<td>Solar UV, EUV</td>
<td>Solar UV, EUV</td>
</tr>
</tbody>
</table>

Black: Data sources already being assimilated; **Red:** New data sources to be assimilated
GAIM-Full Physics

• Ensemble Kalman Filter (24-30 members)
• Physics-based Ionosphere-Plasmasphere Model (IPM)
• 5 Data Sources as shown on previous slide

Additional Data Types that could be assimilated in GAIM-FP:

→ Electric Field
→ Neutral Wind
→ Thermospheric Temperature and Composition
→ Etc.
GAIM-FP uses the full physics that is included in the physics-based model (IPM) in the data assimilation scheme

- 90-30,000 km
- Altitude, Latitude, Longitude Grids Set by User
- Six Ion Species (NO⁺, O₂⁺, N₂⁺, O⁺, H⁺, He⁺)
- Realistic Magnetic Field (IGRF)
- Some of the Physical Processes included in IPM:
 - Field-Aligned Diffusion
 - Cross-Field Electrodynamic Drifts
 - Thermospheric Winds
 - Neutral Composition Changes
 - Energy-Dependent Chemical Reactions
 - Ion Production due to:
 - Solar UV/EUV Radiation
 - Auroral Precipitation
 - Star Light
GAIM-FP Global Run

- 400 global TEC stations (IGS network) used in real-time at USU Space Weather Center
- Up to 10,000 measurements assimilated every 15-min
- 40-50 Ionosondes/Digisondes
Reconstructions With Self-Consistent Drivers
GAIM-FP ➔ Regional Run

- Snapshots of TEC measurements (left)
- GAIM-FP reconstruction (middle)
- GAIM-FP neutral wind at 300 km (right)
- 17:00 UT, day 82, 2004
GAIM Data-Driven D-Region Extension

- Electron density extension down to 40 km altitude
- Uses GOES X-rays and Particles Observations
- Calculates HF Absorption

2014/112 21:00 UT

Absorption (db)
Incorporation of Low-Latitude Bubbles into GAIM

SSUSI bubble observations are incorporated into high-resolution GAIM specifications.
GAIM-FP Output

- Continuous Reconstruction of Global N_e Distribution
 - Ionosphere-Plasmasphere
 - D, E, F Regions, Topside and Plasmasphere
 - 40-30,000 km

- Quantitative Estimates of the Accuracy of Reconstruction

- Model Drivers
 - Electric Fields
 - Global Neutral Winds
 - Global Neutral Composition
GAIM-High Latitude

Ensemble Kalman Filter for High-Latitude Ionosphere Dynamics and ElectroDynamics

High-Resolution Specification of Convection, Precipitation, Currents & Ionosphere
Physics-Based Model Behind GAIM-High Latitude Model

Time-Dependent Ionosphere Model
- 3-D Density Distributions ($\text{NO}^+, \text{O}_2^+, \text{N}_2^+, \text{O}^+, \text{H}^+, \text{He}^+$)
- 3-D T_e and T_i Distributions
- Ion Drifts Parallel & Perpendicular to B
- Hall & Pedersen Conductances

M-I Electrodynamics Model
- MHD Transport Equations & Ohm’s Law
- Alfven Wave Propagation
- Active Ionosphere
- 10 km & 5 sec Resolutions
- Potential, E-field, Currents, Joule Heating

Magnetic Induction Model
- Calculates B Perturbations in Space & on Ground
- Includes Earth’s Induction Effect
Data Assimilated by GAIM-High Latitude Model

At High Latitudes it is critical to assimilate observations connected with the drivers

- Ground Magnetic Data from 100 Sites
- Cross-Track Velocities from 4 DMSP Satellites
- Line-of-Sight Velocities from 9 SuperDARN Radars
- In-situ ΔB from the 66 IRIDIUM Satellites
- ACE IMF, solar wind velocity, Kp
Output of GAIM-High Latitude Model (High Resolution)

- Electric Potential
- Convection Electric Field
- Energy Flux and Average Energy of Precipitation
- Field-Aligned and Horizontal Currents
- Hall and Pedersen Conductances
- Joule Heating Rates
- 3-D Electron and Ion Densities
- 3-D Electron and Ion Temperatures
- TEC
- Ground and Space Magnetic Disturbances
Operational Models

GAIM-Models are running at

• AFWA
• Northrup Grumman
• AFRL
• NRL
• USU SWC
• CCMC